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Abstract The frequencies of the bursting events associated with the streamwise coherent
structures of spatially developing incompressible turbulent boundary layers were predicted.
The structures were modeled as wavelike disturbances associated with the turbulent mean flow
using a direct-resonance theory. Global numerical solutions for the resonant eigenmodes of the
Orr-Sommerfeld and the vertical vorticity equations were developed. The global method
involves the use of second and fourth order accurate finite difference formulae for the
differential equations as well as the boundary conditions. The predicted resonance frequencies
were found to agree very well with previous results using a local shooting technique and
measured data.

Nomenclature
Av = coefficient in equation (7)
Bv = coefficient in equation (7)
B� = coefficient in equation (8)
C = coefficient matrices in equation (10)
D = d

dy
D = lambda matrix
Fi = averaged turbulence quantity
L = length scale
Re = Reynolds number
U = mean velocity in the x-direction
c = wavespeed
i = index or

������ÿ1
p

m = transformation metric d�y
dy

t = time
x = x coordinate
y = y coordinate
z = z coordinate
U1 = free stream velocity
f i = turbulence quantity

f 0i = background fluctuation
fi = wavelike component
u� = wall frictional velocity
v̂ = mode shape for the wavelike

y±component of velocity
v = solution vector in equation (9)
y = transformed y coordinate
y� = yu�

�
� = wavenumber in the x-direction
� = wavenumber in the z-direction
� = boundary layer thickness
�� = boundary layer displacement

thickness
�̂ = mode shape for the x-component of

vorticity
� = kinematic viscosity
! = frequency
!� = !�

u2
�
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Introduction
Many experimental results on incompressible and compressible turbulent
boundary layers have indicated the existence of coherent structures in such
flows. The quasi-deterministic occurrence of large-scale organized structures is
collectively called the bursting process. A sketch of the bursting event
(Cantwell, 1989) is shown in Figure 1. The bursting process is believed to play a
dominant role in the development of turbulent boundary layers.

The bursting process is associated with the appearance of counter-rotating
vortex structures. Experiments by Morrison and Kronauer (1969) showed that
the statistically dominant streamwise fluctuations exhibited wavelike
characteristics, suggesting that a hydrodynamic wave description for the
streamwise structures is applicable.

Based on a weakly nonlinear theory, Jang et al. (1986) proposed that
resonance could occur for certain damped three-dimensional modes when the
eigenmodes of the Orr-Sommerfeld solution corresponded to that associated
with the vertical vorticity equation. They showed that for incompressible
turbulent boundary layers, the secondary mean flow induced by these resonant
fundamental modes contained streamwise vortical structures.The shape of the
predicted structures and the spacing of the accompanying low-speed streaks
are comparable with experimental observation.

Because of the nature of the numerical integration scheme used in Jang et al.
(1986), some knowledge of the eigenvalues is required a priori in order for the
numerical solution to be successful. Since this information is not readily

Figure 1.
A sketch of the bursting

event (Cantwell, 1989)
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available beyond a few simple profiles for the mean quantities, it severely
limits the use of the direct-resonance method in simple flow cases. Furthermore,
the eigenvalue spectra of the Orr-Sommerfeld and the vertical vorticity
equations contain many other eigenmodes. It is possible that the eigenmodes
not considered in Jang et al. (1986) might also excite resonance. These issues
may become a major concern when the flow speed increases, and effects of
compressibility are included.

In addition, the Orr-Sommerfeld and the vertical vorticity equations yield
stiff systems of ordinary differential equations. In the process of the numerical
integration of a stiff system, numerical errors associated with one solution may
contaminate the other and lose their linear independence. Extra care, such as
the use of a re-orthonormalization procedure, is required to keep the solution
independent. In this study we implemented a modern global numerical scheme
for the eigenvalue problems. A global method solves the equations using a
global approximation of the solution. The global solution method does not
require a re-orthonormalization procedure and is ideal for stiff systems, such as
the Orr-Sommerfeld and the vorticity equations (Liou and Morris, 1992a; Baty
and Morris, 1995; Bridges and Morris, 1984).

The global method provides a description of the entire eigenvalue spectrum
of the stability problem without using any prior knowledge of the eigenvalues,
as is required by the traditional shooting procedure. As such, all possible
bursting frequencies are likely to be identified automatically without artificial
intervention. This capability allows an efficient numerical prediction of
bursting frequencies.

In this study second ± and fourth ± order accurate finite difference formulae
have been used in approximating the incompressible Orr-Sommerfeld equation,
the vertical vorticity equation, and their boundary conditions.

In the following, the derivation and the solution of the equations are
described. The results are presented in the last section.

Modeling
Turbulence quantities, fi , are decomposed into three components (Liou and
Morris, 1992b):

fi � Fi � fi � f 0i ; �1�
where Fi represents a long-time average of fi, fi the wave like component of fi ,
and f 0i the background fluctuation. Substituting equation (1) into the Navier-
Stokes equations, followed by a linearization of the disturbance quantities, the
equations governing the mode shape of the vertical velocity, v̂, the Orr-
Sommerfeld equation, and the homogeneous vertical vorticity, �̂, equation can
be found:�

i��U ÿ !��D2 ÿ �2 ÿ �2� ÿ i�D2U ÿ 1

Re
�D2 ÿ �2 ÿ �2�2�v̂ � 0 �2�
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�
i��U ÿ !� ÿ 1

Re
�D2 ÿ �2 ÿ �2���̂ � 0 �3�

Equations (2) and (3) have been derived by assuming a normal mode solution
for the wavelike disturbances, fi, i.e.

fi � f̂ie
i��x��zÿ!t�: �4�

In equations (2) and (3), U represents the streamwise mean velocity, and
D � d=dy. Equations (2) and (3) govern the mode shape of wavelike
disturbances associated with the mean quantities in terms of the streamwise
and spanwise wave numbers, � and �; the wave frequency, !; and the flow
Reynolds number, Re�� U1L

� �. In this study the bursting frequencies of the
streamwise coherent structures in turbulent boundary layers are sought using
the direct-resonance model. The condition for direct resonance can be written
as

cOS��; �;Re� � cVV ��; �;Re� �5�
where cOS and cVV represent the phase velocity, !=�, associated with the Orr-
Sommerfeld and the vertical vorticity eigenvalue problems respectively.

The boundary conditions for v̂ and �̂ are

v̂ � Dv̂ � �̂ � 0 at y � 0; 1: �6�
In the following section the numerical solution of equations (2), (3), (5), and (6)
are described.

Numerical solutions
Mean flow
In contrast to the laminar stability calculations, the Blasius-type of solution can
not be used to describe the mean flow velocity in the present study. The local
turbulent mean velocity in the streamwise direction, U , needed for the current
incompressible turbulent flat-plate boundary layers can be obtained by using
experimental correlations. The mean velocity can also be obtained numerically,
for example, by solving the Reynolds-average Navier-Stokes or boundary layer
equations. Analytical correlations that were developed based on experimental
data often consist of multiple functions for the different layers in turbulent
boundary layers. The derivatives of the velocity are often discontinuous across
these zones where different functional forms for the velocity profile are used.
As the present eigenvalue problems are sensitive to the profile shapes of U and
D2U , the numerical solution of U and D2U were used in the present
calculations. In the results given here, these profiles were obtained by using
dense grids (� 1; 000) in a boundary-layer equation solver to retain a higher
order of fidelity of the velocity as well as its second-order derivative. A mixing-
length turbulence model was used for the turbulent eddy-viscosity.
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Wavelike structure
To resolve the near-wall behavior of turbulent boundary layers, grids with
constant stretching ratios were used in both the mean flow calculation and the
wave calculations, equation (2) and (3). In the transformed coordinate, �y, the
equations can be written as,

m�m�m�mv̂0�0�0�0 � Avm�mv̂0�0 � Bvv̂ � 0 �7�

m�m�̂0�0 � B��̂ � 0; �8�

where

Av � ÿ2��2 � �2� ÿ iRe��U ÿ !�

Bv � ��2 � �2�2 � iRe��2 � �2���U ÿ !� � iRe�D2U

B� � ÿiRe��U ÿ !� ÿ ��2 � �2�

and

��0 � d��
d�y

�y denotes the transformed coordinate. The transformation metric, m, is
determined numerically. The global solution for the Orr-Sommerfeld and the
vertical vorticity equations involves the use of second- and fourth-order
accurate finite difference formulae for the equations and for the boundary
conditions. The second-order formulae are widely available. The fourth order
formulae used here are listed in the Appendix. The resulting homogeneous
systems of equations form eigenvalue problems, for both the Orr-Sommerfeld
and the vertical vorticity equations, nonlinear in the parameter, �. For the Orr-
Sommerfeld equation the system can be written as

D4���v � 0 �9�
The matrix, D4, is a lambda matrix of degree four (Lancaster, 1966), and can be
expressed as a scalar polynomial with matrix coefficients:

D4��� � C0�
4 �C1�

3 �C2�
2 �C3��C4: �10�

With the inclusion of the boundary conditions, the matrices C0s are square
matrices of order n, which represents the number of grid point in �y. A linear
companion matrix method was used to linearize the lambda matrix. The
resulting general eigenvalue problem becomes
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ÿC1 ÿC2 ÿC3 ÿC4

I 0 0 0
0 I 0 0
0 0 I 0

0BB@
1CCAÿ �

C0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

0BB@
1CCA

8>><>>:
9>>=>>;

�3v̂
�2v̂
�v̂
v̂

0BB@
1CCA � 0:

�11�
Equation (11) can be further transformed to an algebraic eigenvalue problem
seeking the eigenvalues of matrix A:

A �
ÿCÿ1

0 C1 ÿCÿ1
0 C2 ÿCÿ1

0 C3 ÿCÿ1
0 C4

I 0 0 0
0 I 0 0
0 0 I 0

0BB@
1CCA: �12�

The eigenvalues may be obtained by using QR or QZ algorithms. The details of
the formulation and the application of the linear companion matrix method can
be found in Bridges and Morris (1984) and Liou and Morris (1992a). Similarly,
for the vertical vorticity equation, the system of equations can be written as

D2���� � 0:

The eigenvalues can be obtained by using the procedure described above.
The resonance in the stability problem occurs when there is a set of

parameters(�; �; !) for which the solutions of the Orr-Sommerfeld and the
vertical vorticity equations exist for a given mean velocity distribution and a
Reynolds number. To locate the resonance mode, we choose to solve the
following equations:

�OS
r ��; !� ÿ �VV

r ��; !� � 0 �13a�
�OS

i ��; !� ÿ �VV
i ��; !� � 0 �13b�

where �r and �i denote the real and the imaginary parts of �. A subroutine in
the IMSL package called NEQBF has been used to solve the system of
equations.

Results
In this section the numerical solutions of the resonance problem obtained by
using the high order finite difference global method are described. To validate
the numerical procedure, a polynomial type of distribution was first used as the
mean velocity profile. The profile

U�y
�
� � 2�y

�
� ÿ 2�y

�
�3 � �y

�
�4

was often used as an approximation to the streamwise velocity of flat plate
boundary layers. � represents the boundary-layer thickness. The eigenvalues
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obtained by using the present global method with fourth-order formulae and
201 grid points were compared with those obtained by using the local shooting
method. The comparisons are shown in Table I.

Figure 2 shows the calculated complex phase velocity for a plane mode, and
Re�U1�� � � 8; 000 and 10,000 for the vertical vorticity equation. The frequencies
are 0.0122 and 0.1202 respectively. An analytical form of the continuous
spectrum (Grosch and Salwen, 1978) was also included for comparison. For
Re � 10; 000, the two discrete Tollmien-Schlichiting instability modescan be
clearly identified. For Re � 8; 000, the discrete spectrum appears close to the
continuous spectrum. For both cases the continuous spectra are well-resolved.

Numerical experiments were conducted to examine the effects of the order of
the finite difference approximation, the number of grid points, and the location of
the outer boundary of the computed domain. Second-, as well as fourth-, order
approximations were applied to the differential equations and the boundary
conditions. Figure 3 shows a result of the calculated complex phase velocity for a
plane mode for the Orr-Sommerfeld equation using various finite differencing,
numbers of grid point, and (y��max. The symbols represent the results for different
calculated cases denoted by a-b-c, where [a] denotes the order of accuracy, [b] the

Table I.
Comaprison of the
calculated
eigenvalues, �

Re ! Equations Present Shooting

8,000 0.2354 Orr-Sommerfeld (0.780864,-0.013533) (0.781148,-0.01356)
10,000 0.1202 Vertical vorticity (0.41512, 0.40891) (0.415119, 0.408911)

Figure 2.
Complex wave speed.
Vertical vorticity
equation
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number of discretized points used, and [c] the far field boundary distance to the
wall. The first, second, and the third number in [a] represent the order of accuracy
for the derivatives in the Orr-Sommerfeld equation, for the far field boundary
conditions, and for the wall boundary conditions respectively. The agreement
between the computed and the analytical continuous spectrum improves with the
increasing number of grid nodes. It also appears that increasing the order of
accuracy of the discretization enhances the agreement. Numerical experiments for
the vertical vorticity equation yielded similar results. The results shown in the
following for both the Orr-Sommerfeld and the vertical vorticity equations were
obtained by using the fourth order formulae and a grid of 200 nodes.

To calculate the eigenvalues of the direct-resonant problems associated with a
turbulent flat plate boundary layer, the mean streamwise velocity and its second
derivative distribution were needed. A boundary-layer equation solver using the
Prandtl's mixing length model with the van Driest damping function was
developed. The calculated turbulent mean velocity distribution for Re � 1; 000 is
shown in Figure 4. The results compared well with the log law-of-the-wall in the
log layer of the boundary layer. The number of grid points used is 998. The
second derivative of the mean velocity, D2U , was obtained using a fourth-order
accurate finite difference formula. Figure 5 shows the D2U distribution. For
laminar boundary layers, the solutions of the Orr-Sommerfeld and vertical
vorticity equations are known to be sensitive to the input velocity and its second
derivative. We found that this sensitivity of the Orr-Sommerfeld and vertical
vorticity equations to the input U and D2U remains for the current problem

Figure 3.
Comparison of

eigenvalue spectra. Orr-
Sommerfeld equation
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involving turbulent boundary layers. As can be seen in Figures 4 and 5, the U
and D2U profiles vary significantly over a small distance in the near-wall region
of the flow. It is necessary that the multiple length scales of turbulent boundary
layers be resolved properly in the Orr-Sommerfeld and vertical vorticity
problems. In this study, algebraically stretched grids were used to ensure an
appropriate resolution of the mean flow. Comprehensive numerical experiments
showed that a parameter set of y�1 � 1 and � y

���max � yl � 50 gives the best
results in terms of both the discrete and the continuous spectra of the Orr-
Sommerfeld and vertical vorticity equations for a wide range of Reynolds
numbers. �� denotes the displacement thickness and ��1 the first grid point away
from the wall. Figure 6 shows a typical result of the numerical experiments.
Figure 6 shows the complex phase velocity spectrum of the vertical vorticity
equation for ! � 2; � � 10; yl � 50; and y�1 � 0:001; 0:01; 0:1; 1:0; 5:0. Except
for y�1 � 5, the computed discrete modes agree well. There is a more significant
separation between the discrete and the continuous spectra for y�1 � 1 than for
the other values. Similar results were also obtained for the Orr-Sommerfeld
equation. This separation between the discrete and the continuous modes was
used as a criterion to identify the discrete modes from the continuous modes in
an automated procedure of bursting frequency prediction. A calculation with
y�1 � 1 and yl � 90 shows no changes in either the discrete or the continuous
spectra. Figure 7 shows the eigenvalue spectrum for the Orr-Sommerfeld
equation for a turbulent boundary layer for Re�U1��� � � 1; 000.

Figure 4.
Streamwise mean
velocity
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Figure 6.
Results of parametric

studies. Vertical
vorticity equation

Figure 5.
Second order derivative

of the mean velocity
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As was stated earlier, based on the direct-resonance theory, an automated
procedure has been developed for the prediction of the bursting frequencies
associated with the streamwise structures in turbulent boundary layers. To
identify a resonance mode, the Orr-Sommerfeld equation and the homogeneous
vertical vorticity equation were first solved. Resonance occurs when the
eigenvalues of the Orr-Sommerfeld solution correspond to that associated with
the vertical vorticity equation. The resonance condition has been written in the
form of a system of two equations, equation (13), nonlinear in their parameters,
! and �. The resonance mode is identified when a solution of Equation (13) is
found. The solution of equation (13) involves an iteration process. The search
for a resonance mode is complete when the solution of equation (13) is obtained.
The procedure for searching the resonance mode has been automated. The
automated search procedure was implemented in a FORTRAN software.

Figures 8, 9, and 10 show the results of using the automated procedure for a
turbulent boundary layer of Re � 1; 000. Figures 8 and 9 show the convergent
history for the complex � and c respectively. The search process was
terminated when the right-hand side of equation (13), denoted by dR and dI ,
have reduced to the order of ±4. Figure 10 shows the evolution of dR and dI

during an iteration process. The predicted resonant frequency is !�=0.0962,
which compares well with that of Jang et al. (1986), of 0.09, calculated by using
a shooting method for temporally developing turbulent boundary layers and
the measured data by Morrison and Kronauer (1969).

The eigenvalue spectra for the Orr-Sommerfeld and vertical vorticity
equations at the resonance condition for Re � 8; 000 are shown in Figure 11.

Figure 7.
Eigenvalue spectrum.
Turbulent. Orr-
Sommerfeld equation
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Figure 8.
Convergent history of �

Figure 9.
Convergent history of c
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Figure 10.
Convergent history

Figure 11.
Eigenvalue sprectrum at
resonance. Re=8,000.
Orr-Sommerfeld
equation
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The predicted resonance frequency was !� � 0:0962. Figure 11 also shows
that, when the resonance condition is met, there is apparently a matching of not
only the discrete mode but also the continuous modes.

Concluding remarks
In this study a global solution method has been successfully developed to
predict the bursting frequencies associated with the coherent streamwise
structures in incompressible turbulent boundary layers. The prediction was
based on the direct resonance model. The prediction tool developed has been
automated, and no artificial intervention is necessary other than assigning the
starting values. In the present study the predicted bursting frequencies have
been found to agree very well with previous numerical calculations and
experimental data for incompressible turbulent boundary layers over a flat
plate.

References

Baty, R.S. and Morris, P.J. (1995), `̀ The instability of jets of arbitrary exit geometry'',
International Journal of Numerical Methods in Fluids, Vol. 21 p. 763.

Bridges, T.J. and Morris, P.J. (1984), `̀ Differential eigenvalue problems in which the parameter
appears nonlinearly'', Journal of Computational Physics, Vol. 55 p. 437.

Cantwell, B.J. (1989), `̀ Future directions in turbulence research and the role of organized motion'',
Whither Turbulence Workshop, Cornell University.

Grosch, C.E. and Salwen, H. (1978), `̀ The continuous spectrum of the Orr-Sommerfeld equation.
Part I. The spectrum and the eigenfunctions'', Journal of Fluid Mechanics, Vol. 87 p. 33.

Jang, P.S., Benny, D.J. and Gran, R.L. (1986), `̀ On the origin of streamwise vortices in a turbulent
boundary layer'', Journal of Fluid Mechanics, Vol. 169 p. 109.

Lancaster, P. (1966), Lambda Matrices and Vibrating Systems, Permagon, Oxford.

Liou, W.W. and Morris, P.J. (1992a), `̀ The eigenvalue spectrum of the Rayleigh equation for a
plane shear layer'', International Journal of Numerical Methods in Fluids, Vol. 15 p. 1407.

Liou, W.W. and Morris, P.J. (1992b), `̀ Weakly nonlinear models for turbulent mixing in a plane
mixing layer'', Physics of Fluids, Vol. 4 p. 2798.

Morrison, W.R.B. and Kronauer, R.E. (1969), `̀ Structural similarity for fully developed turbulence
in smooth tubes'', Journal of Fluid Mechanics, Vol. 39 p. 117.

Appendix
The fourth order, O��4�, finite difference formulae used in the current study are given below. All
formulae are given for the derivatives at a point denoted by ��0 and its neighboring points in
decreasing order,��ÿ1, ��ÿ2,..., and in increasing order, ���1,���2,..., etc.. � denotes the uniform
grid spacing.

f 00 �
fÿ2 ÿ 8fÿ1 � 8f1 ÿ f2

12�

f 00 �
ÿ3fÿ1 ÿ 10f0 � 18f1 ÿ 6f2 � f3

12�

f 00 �
3f1 � 10f0 ÿ 18fÿ1 � 6fÿ2 ÿ fÿ3

12�
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f 00 �
ÿ25f0 � 48f1 ÿ 36f2 � 16f3 ÿ 3f4

12�

f 00 �
25f0 ÿ 48fÿ1 � 36fÿ2 ÿ 16fÿ3 � 3fÿ4

12�

f 000 �
ÿ2fÿ2 � 16fÿ1 ÿ 30f0 � 16f1 ÿ f2

12�2

f 000 �
10fÿ1 ÿ 15f0 ÿ 4f1 � 14f2 ÿ 6f3 � f4

12�2

f 000 �
10f1 ÿ 15f0 ÿ 4fÿ1 � 14fÿ2 ÿ 6fÿ3 � fÿ4

12�2

f 0000 �
fÿ3 ÿ 8fÿ2 � 13fÿ1 ÿ 13f1 � 8f2 ÿ f3

8�3

f 0000 �
ÿfÿ2 ÿ 8fÿ135f0 ÿ 48f1 � 29f2 ÿ 8f3 � f4

8�3

f 0000 �
f2 � 8f1 ÿ 35f0 � 48fÿ1 ÿ 29fÿ2 � 8fÿ3 ÿ fÿ4

8�3

f 00000 �
ÿfÿ3 � 12fÿ2 ÿ 39fÿ1 � 56f0 ÿ 39f1 � 12f2 ÿ f3

6�4

f 00000 �
20fÿ2 ÿ 55fÿ1 � 155f1 ÿ 220f2 � 135f3 ÿ 40f4 � 5f5

30�4

f 00000 �
20f2 ÿ 55f1 � 155fÿ1 ÿ 220fÿ2 � 135fÿ3 ÿ 40fÿ4 � 5fÿ5

30�4


